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Abstract
We introduce an exactly-solvable family of one-dimensional driven-diffusive
systems defined on a discrete lattice. We find the quadratic algebra of this
family which has an infinite-dimensional representation. We discuss the phase
diagram of the system in a couple of special cases.

PACS numbers: 05.70.Ln, 02.50.Ey, 04.20.Jb

One-dimensional driven-diffusive systems are systems of classical particles with hard-core
interactions moving in a preferred direction which can be used to model many systems such
as ribosomes moving along a m-RNA, ions diffusing in a narrow channel under the influence
of an electric field or even cars proceeding on a long road [1–3]. These systems are usually
defined on an open lattice coupled with two reservoirs at both ends or on a lattice with periodic
boundary conditions. In the long-time limit the system settles into an non-equilibrium steady
state characterized by some bulk density and the corresponding particle current. The out-of-
equilibrium steady-state properties of these systems are not only affected by the boundaries
but also to the localized inhomogeneities which play a crucial role not comparable to that in
classical equilibrium systems. Driven-diffusive systems have been studied extensively in the
past decade because of their unique non-equilibrium properties.

There are different approaches to study the steady state of these systems. The matrix
product formalism (MPF) is one of the most powerful techniques in this field [4–6]. According
to this formalism one assigns an operator to every state of a lattice site of the system. Now
every configuration of the system is associated with a product of such operators. The steady-
state probability of such configuration is then given by a trace (for the systems defined on a ring
geometry) or a matrix element (for the systems defined on an open lattice) of such products.
For instance for a three-states system on a lattice with the periodic boundary condition we
define three operators, let us say A,B and E, associated with three different states of each
lattice site. The steady-state weight of a given configuration similar to ABEEABEAA is
then proportional to Tr[ABEEABEAA]. Requiring that the probability distribution function
of the system defined above is stationary provides us with an algebra of operators. For the
systems with nearest-neighbors interactions it turns out that the algebra is quadratic. In order
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to calculate the steady-state weights one can either work with the commutation relation of
the operators or find a representation for the associated quadratic algebra of the system (for a
recent review on the MPF, see [4]).

So far only a couple of one-dimensional driven-diffusive models have been solved exactly
using the MPF [4]. Therefore, it would be interesting to investigate whether or not there are
other models which can be solved exactly using this technique. In this paper, we introduce a
large family of one-dimensional driven-diffusive models which under some constraints on the
reaction rates can be solved exactly, i.e. the steady-state weight of any configuration can be
calculated rigourously using the MPF. From there the mean values of physical quantities such
as the currents of particles and also their concentrations can be obtained exactly. This three-
states family belongs to the systems with non-conserving dynamics and nearest-neighbors
interactions. These states belong to two different types of particles and holes on each lattice
site. It is not clear that the steady-state weights of such a system can generally be written as
matrix product states; however, we will present a constraint under which it will be possible
to write these weights using the MPF. In this regard, we will relate the quadratic algebra of
our system to the quadratic algebra of the systems with known representations. A couple of
members of this family of systems have already been studied in literature. At the end of this
paper, we will briefly discuss some other special cases which have not been studied before.

During last decade several quadratic algebras have been introduced and used to study
the critical behaviors of one-dimensional driven-diffusive systems. It has also been tried
to classify certain quadratic algebras and find their representations [7–9]. One of the most
well-known quadratic algebras belongs to the partially asymmetric simple exclusion process
(PASEP) in which the classical particles hop to the left and to the right with the rates p and q
on an open one-dimensional lattice of the length L. The jumps of particles are only successful
provided that the target sites are empty. The particles are injected into the system from the left
boundary with the rate α provided that the first site of the lattice is empty. The particles are
also extracted from the last site of the lattice provided that it is already occupied. The particles
are subjected to the hardcore interactions so that two particles cannot occupy a single site
of the lattice simultaneously. It is known that the steady-state weights of the PASEP can be
written in terms of products of infinite-dimensional square matrices which satisfy a quadratic
algebra of the following form [5, 10, 11]:

pAB − qBA = A + B

αA|V 〉 = |V 〉
β〈W |B = 〈W |

(1)

in which the operators A and B are associated with two different states of each lattice site, i.e. a
particle and an empty site respectively. It is known that this algebra has an infinite-dimensional
matrix representation for p � q given by the following matrices [5]

A = 1

p − q




1 − a d1 0 0 · · ·

0 1 − a

(
q

p

)
d2 0

0 0 1 − a

(
q

p

)2

d3

0 0 0 1 − a

(
q

p

)3

...
. . .
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B = 1

p − q




1 − b 0 0 0 · · ·
d1 1 − b

(
q

p

)
0 0

0 d2 1 − b

(
q

p

)2

0

0 0 d3 1 − b

(
q

p

)3

...
. . .




(2)

and vectors

|V 〉 =




1
0
0
0
...




, 〈W | = (1 0 0 0 · · ·) (3)

in which we have defined a = 1 − p−q

α
, b = 1 − p−q

β
and di

2 = (
1 − (

q

p
)i

)(
1 − ab

(
q

p
)i−1

)
.

The matrix representation of (1) given by (2) and (3) is quite well defined in a sense that the
product of any number of these matrices sandwiched between 〈W | and |V 〉 is finite. In what
follows we will look for those systems which their steady states in terms of the MPF are given
by (1) and its representation, i.e. (2) and (3).

Let us define a new operator E = ω|V 〉〈W | in which ω is a real number. By multiplying
〈W |ω from the right in the second row and also ω|V 〉 from the left in the third row of (1) one
finds

pAB − qBA = A + B

αAE = E

βEB = E,

(4)

which was first introduced in [12]. Obviously, this algebra has the same representation given
by (2) and (3) and one should only define E as

E = ω|V 〉〈W | =




ω 0 0 0 · · ·
0 0 0 0
0 0 0 0
0 0 0 0
...

. . .




. (5)

It can easily be verified that the operator E has the property E2 = ωE and also can be added
to (4) without changing its matrix representation to make a larger and well-defined quadratic
algebra. Therefore, the following quadratic algebra has the same matrix representation given
by (2), (3) and (5)

pAB − qBA = A + B

αAE = E

βEB = E

E2 = ωE.

(6)
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The question is now whether or not one can find a three-states model, defined on a lattice with
a ring geometry, with a steady state described by (6). By applying the standard MPF [4, 6] we
have found that the steady-state probability distribution function of the following three-states
system:

A + B → B + A with the rate x42

B + A → A + B with the rate x24

A + ∅ → ∅ + A with the rate x73

A + ∅ → ∅ + B with the rate x83

A + ∅ → ∅ + ∅ with the rate x93

∅ + ∅ → A + ∅ with the rate x39

∅ + B → A + ∅ with the rate x38

∅ + B → B + ∅ with the rate x68

∅ + B → ∅ + ∅ with the rate x98

∅ + ∅ → ∅ + B with the rate x89

(7)

in which A,B and E can be associated with two particles of different types and an empty site
respectively, can be described by (6) provided that we define

p = x42

q = x24

α = x73

β = x68

ω = 1

x39 + x89

(
x93

x73
+

x98

x68

)
(8)

and require the parameters to satisfy the following constraint:

x39

(
x83

x73
− x38 + x98

x68

)
= x89

(
x38

x68
− x93 + x83

x73

)
. (9)

This constraint together with definitions (8) guarantee that our model defined by (7) has a
well-defined algebra given by (6) and that its steady-state weights can be expressed in terms
of a matrix product states.

As we mentioned, a couple of special cases of this family of models have already been
studied in literature. For instance in [13] the authors have studied an exactly solvable model
with the constraints x83 = x38 = 0, x42 = 1

q
x24 = x73 = x68 = x39 = x89 = 1 and

x93 = x98 = ω. In this case, the particle number for both A and B particles changes
because of creation and annihilation of them. They have found that the system undergoes
a continuous phase transition from a fluid phase to a maximal current phase for q < 1
by varying ω. For q > 1 the system is always phase separated and there is no phase
transition. In another paper, the authors have considered a special case in which x24 = x83 =
x38 = x98 = x89 = 0, x42 = x68 = x73 = x39 = 1 and x93 = ω [14]. In this case, the number
of B particles is conserved while the number of A particles can change due to the creation and
annihilation. It has been shown that, in this case where a finite density of B particles exists on the
ring, the model can be solved exactly and undergoes a second-order phase transition by varying
ω from a phase in which the density of the empty sites is zero to another phase where the density
of the empty sites is nonzero. In [15], the authors have studied the same process with more
general reaction rates as x24 = x83 = x38 = x98 = x89 = 0, x42 = 1

β
x68 = 1

α
x73 = x39 = 1

and x93 = ω; however, in this case they assume that there is only a single B particle in the
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system. They have found that the phase transition is now discontinuous and that shocks might
appear in the system at the transition point.

In what follows we consider the most general case where most of the parameters in (7)
are nonzero which has not been studied in literature yet. We first study the phase diagram of
the model for x24 = 0 and x42 = 1.1 The partition function of the system defined as the sum
of the weights of all accessible configurations with at least one empty site, is given by

ZL(α, β, ω, ξ) = T r[(ξA + B + E)L] − T r[(ξA + B)L]. (10)

The fugacity of A particles ξ is an auxiliary parameter and the reason we have defined it will
be clear shortly. It turns out that the generating function of this partition function can be
calculated exactly. After some straightforward calculations one finds

G(α, β, ω, ξ, λ) =
∞∑

L=1

λLZL = ωλ ∂
∂λ

U

1 − ωU
(11)

in which we have defined

U(α, β, ξ, λ) =
∞∑

L=0

λL+1〈W |(ξA + B)L|V 〉.

It turns out that

U(α, β, ξ, λ) = 4λ

f −(α)f +(β)
, (12)

where

f ±(x) = 1

x

(
1 − 2x ± λ(1 − ξ) −

√
(1 + λ(1 − ξ))2 − 4λ

)
.

The phase diagram of the system can now be obtained by studying the singularities of the
generating function (11) for ξ = 1. One can easily see that in this case the generating
function has two different kinds of singularities: a square root singularity λ∗ = 1

4 and two
simple pole singularities which come from denominator of (11) by solving the equation
1 − ωU(α, β, ξ = 1, λ∗) = 0. However, analyzing the absolute values of singularities shows
that the system can only have two phases: a maximal current phase which is specified by the
square root singularity (for α + β > 1 and

(
2 − 1

α

)(
2 − 1

β
) � ω) and a fluid phase which is

specified by the simple pole singularity (for α + β < 1 or α + β > 1 and
(
2 − 1

α

)(
2 − 1

β

)
< ω).

Keeping ξ = 1 the total density of the empty sites ρE can easily be calculated using

ρE = lim
L→∞

ω

L

∂

∂ω
ln ZL. (13)

In the thermodynamic limit we have ρE ∼ −ω∂ ln λ∗
∂ω

. It turns out that the density of the empty
sites is zero in the maximal current phase while it is nonzero in the fluid phase. The total
density of A and B particles in each phase can also be calculated exactly. Since the density of
the empty sites is known only one of these densities is independent. The auxiliary fugacity ξ

can now help us to find the density of A particles as

ρA = lim
L→∞

ξ

L

∂

∂ξ
ln ZL|ξ=1. (14)

The density of the B particles is then ρB = 1 − ρE − ρA. We have found that in the maximal
current phase ρA = ρB = 1

2 . In the fluid phase both ρA and ρB are complicated functions
of α, β and ω and will not be presented here. The particle currents for both species can also

1 By resealing the time one can always take one of the parameters equal to 1.



13242 F H Jafarpour and P Khaki

be calculated exactly in this case. We have found that the current of A particles JA is always
equal to that of B particles JB . Our calculations also show that the particle current is given
by JA = JB = ZL−1

ZL
which is equal to λ∗ in the thermodynamic limit. In the maximal current

phase we simply find them to be equal to 1
4 . This is actually in contrast with the case studied

in [14] where the number of B particles in one species is conserved. It has been shown that in
this case the currents can be different. For x24 = q, x42 = 1, α = 1 and β = 1 the results are
exactly those obtained in [13]. On a lattice with periodic boundary conditions we have found
that the phase diagram of the model does not change even for arbitrary α and β; therefore, we
will not discuss this case here.

One should note that (6) can also explain the steady state of a system with open boundaries
and two species of particles. The particles of type A (B) are injected from the left (right)
boundary with the rate 1

ω
( 1

ω
) and extracted from the right (left) boundary with the rate α (β).

All of the processes in (7) might also take place on the lattice. The partition function of the
model for x24 = 0 and x42 = 1 can also be calculated exactly and is given by

ZL(α, β, ω) = 〈W |(A + B + E)L|V 〉 =
L∑

i=1

i(2L − i − 1)!

L!(L − i)!

α̃−i−1 − β̃−i−1

α̃−1 − β̃−1
(15)

in which

α̃ = α

1 + αωλ1
, β̃ = β

1 + βωλ2
(16)

and

λ1 = 1

2αβω

(
α − β + αβω −

√
(α − β + αβω)2 + 4αβ2ω(1 − α)

)
, (17)

λ2 = −1

2αβω

(
α − β − αβω −

√
(α − β + αβω)2 + 4αβ2ω(1 − α)

)
. (18)

The phase diagram structure of the model can now be obtained by studying the thermodynamic
behavior of the partition function. Equivalently, one can study the zeros of this partition
function as a function of α, β or ω. It turns out that the system has again two different phases.
The phase transition occurs for α + β > 1 at ω = (

2 − 1
α

)(
2 − 1

β

)
similar to the ring geometry

case. Both phases are symmetric, that is the currents of particles of different types are always
equal.

In this paper, we have investigated a general quadratic algebra (6) associated with a family
of exactly solvable three-states reaction-diffusion systems with non-conserving dynamics
defined on a one-dimensional lattice with a ring geometry. This algebra is in fact the quadratic
algebra associated with the PASEP given by (1) besides the relation E2 = ωE which does
not change the representation of the algebra but it generates a new algebra which allows
us to study a new family of three-states processes using the MPF. This family of three-states
processes is defined by ten nonzero reaction rates given by (7) which should satisfy a constraint
given by (9). Under this constraint the steady state of the system can be written as a matrix
product form. We have considered the most general model of this type on a lattice with
periodic boundary conditions and studied its phase diagram. As we have also mentioned, the
generalized algebra (6) can explain the steady state of a three-states system with the reactions
defined by (7) but this time under open boundary conditions where the particles are allowed
to enter and leave the lattice with some specific injection and extraction rates. The phase
diagram of the model has also been studied and the partition function calculated exactly. Our
approach can be generalized and applied to other models similar to the model studied in [16]
(which is a p-species model defined on a lattice with periodic boundary conditions) to find a
(p+1)-species exactly solvable model. The results will be published elsewhere.
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